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ABSTRACT

Observation of dipolar spin-exchange interactions with lattice-confined polar molecules

Report Title

With the production of polar molecules in the quantum regime1, 2, long-range dipolar interactions are expected to 
facilitate understanding of strongly interacting many-body quantum systems and to realize lattice spin models3 for 
exploring quantum magnetism. In ordinary atomic systems, where contact interactions require wavefunction overlap, 
effective spin interactions on a lattice can be mediated by tunnelling, through a process referred to as superexchange; 
however, the coupling is relatively weak and is limited to nearest-neighbour interactions4, 5. In contrast, dipolar 
interactions exist even in the absence of tunnelling and extend beyond nearest neighbours. This allows coherent spin 
dynamics to persist even for gases with relatively high entropy and low lattice filling. Measured effects of dipolar 
interactions in ultracold molecular gases have been limited to the modification of inelastic collisions and chemical 
reactions6, 7. Here we use dipolar interactions of polar molecules pinned in a three-dimensional optical lattice to 
realize a lattice spin model. Spin is encoded in rotational states of molecules that are prepared and probed by 
microwaves. Resonant exchange of rotational angular momentum between two molecules realizes a spin-exchange 
interaction. The dipolar interactions are apparent in the evolution of the spin coherence, which shows oscillations in 
addition to an overall decay of the coherence. The frequency of these oscillations, the strong dependence of the spin 
coherence time on the lattice filling factor and the effect of a multipulse sequence designed to reverse dynamics due 
to two-body exchange interactions all provide evidence of dipolar interactions. Furthermore, we demonstrate the 
suppression of loss in weak lattices due to a continuous quantum Zeno mechanism8. Measurements of these 
tunnelling-induced losses allow us to determine the lattice filling factor independently. Our work constitutes an initial 
exploration of the behaviour of many-body spin models with direct, long-range spin interactions and lays the 
groundwork for future studies of many-body dynamics in spin lattices.
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Observation of dipolar spin-exchange interactions with
polar molecules in a lattice

Bo Yan,1 Steven A. Moses,1 Bryce Gadway,1 Jacob P. Covey,1 Kaden R. A. Hazzard,1 Ana

Maria Rey,1 Deborah S. Jin,1 Jun Ye1

1JILA, National Institute of Standards and Technology and University of Colorado, and Depart-

ment of Physics, University of Colorado, Boulder, CO 80309, USA.

With the recent production of polar molecules in the quantum regime 1, 2, long-range dipolar

interactions are expected to facilitate the understanding of strongly interacting many-body

quantum systems and to realize lattice spin models 3 for exploring quantum magnetism. In

ordinary atomic systems, where contact interactions require wave function overlap, effective

spin interactions on a lattice can be realized through superexchange; however, the coupling is

relatively weak and limited to nearest-neighbor interactions 4, 5. In contrast, dipolar interac-

tions exist even in the absence of tunneling and extend beyond nearest neighbors. This allows

coherent spin dynamics to persist even for gases with relatively high entropy and low lat-

tice filling. While measured effects of dipolar interactions in ultracold molecular gases have

thus far been limited to the modification of inelastic collisions and chemical reactions 6, 7,

we now report the first observation of dipolar interactions of polar molecules pinned in a

three-dimensional optical lattice. We realize a lattice spin model where spin is encoded in

rotational states of molecules that are prepared and probed by microwaves. This interaction
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arises from the resonant exchange of rotational angular momentum between two molecules

and realizes a spin-exchange interaction. The dipolar interactions are apparent in the evolu-

tion of the spin coherence, where we observe clear oscillations in addition to an overall decay

of the coherence. The frequency of these oscillations, the strong dependence of the spin co-

herence time on the lattice filling factor, and the effect of a multi-pulse sequence designed to

reverse dynamics due to two-body exchange interactions all provide clear evidence of dipo-

lar interactions. Furthermore, we demonstrate the suppression of loss in weak lattices due to

a continuous quantum Zeno mechanism 8. Measurements of these tunneling-induced losses

allow us to independently determine the lattice filling factor. The results reported here com-

prise an initial exploration of the behavior of many-body spin models with direct, long-range

spin interactions and lay the groundwork for future studies of many-body dynamics in spin

lattices.

Long-range and spatially anisotropic dipole-dipole interactions permit new approaches for

the preparation and exploration of strongly correlated quantum matter that exhibit intriguing phe-

nomena such as quantum magnetism, exotic superfluidity, and topological phases 9–13. Ultracold

gases of polar molecules provide highly controllable, long-lived, and strongly interacting dipolar

systems and have recently attracted intense scientific interest. Samples of fermionic 40K87Rb polar

molecules, with an electric dipole moment of 0.57 Debye (1 Debye = 3.336×10−30 C· m) 1, have

been prepared near the Fermi temperature, and all of the degrees of freedom (electronic, vibra-

tional, rotational, hyperfine, and external motion) can be controlled at the level of single quantum

states 7, 14, 15.
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The surprising discovery of bi-molecular chemical reactions of KRb at ultralow tempera-

tures 2, 6, 7 appeared to be a major challenge for creating novel quantum matter. However, the

molecules’ motion, and consequently their reactions, can be fully suppressed in a three-dimensional

(3D) optical lattice, where relatively long lifetimes (>25 s) have been observed 15. The long-range

dipolar interaction can then play the dominant role in the dynamics of the molecular internal de-

grees of freedom, for example, by exchanging two neighboring molecules’ rotational states. With

spin encoded in the rotational states of the molecule, these dipolar interactions give rise to spin-

exchange interactions, analogous to those that play an important role in quantum magnetism and

high-temperature superconductivity 16. In a 3D lattice, where each molecule is surrounded by many

neighboring sites, this system represents an intriguing many-body quantum spin system where ex-

citations can exhibit strong correlations even at substantially less than unit lattice filling 17.

Several features distinguish the interactions in a molecular spin model from those observed

in ultracold atomic systems. For the superexchange interaction of atoms in optical lattices 4, 5, the

short-range nature of the interparticle interactions necessitates a second-order perturbative process

in the tunneling of atoms between lattice sites. Hence, the energy scale of the superexchange inter-

action decreases exponentially with lattice depth. This spin-motion coupling limits superexchange

to nearest-neighbor interactions and requires extremely low temperature and entropy.

In contrast, long-range dipolar interactions decay as 1/r3 with separation r, and interactions

beyond nearest neighbors are significant. This long-range interaction allows exploration of coher-

ent spin dynamics in very deep lattices where the molecules’ translational motion is frozen and
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where the absence of tunneling would preclude the superexchange interactions of atoms. We note

that the dipolar interaction is also unique compared to that of electrons, where an effective spin

interaction arises due to the spin-independent Coulomb interaction and the exchange symmetry of

the fermionic electrons. In contrast, the dipolar interaction is a direct spin-spin interaction that

does not require any wave function overlap. In addition to polar molecules, ultracold systems

such as magnetic atoms 10, 18–20 and trapped ions 21, 22 are candidates for realizing coherent, control-

lable spin models with power-law interactions; however, spin-exchange interactions have yet to be

created and observed in these systems. In Rydberg atoms, Förster resonances involving multiple

Rydberg states have been observed, albeit with short coherence times 23.

The molecular rotational states |N,mN〉, where N is the principal quantum number and mN

the projection onto the quantization axis, are the focus of our current investigation of a dipolar spin

system. In general, an external DC electric field induces a dipole moment in the laboratory frame

by mixing opposite-parity rotational states. However, even in the absence of a DC electric field,

dipolar interactions can be established using a microwave field to create a coherent superposition

between two rotational states, labeled as | ↑〉 and | ↓〉 24. In addition, a microwave field can probe

the coherent spin dynamics due to dipolar interactions.

In the absence of an applied electric field, two-level polar molecules trapped in a strong

3D lattice (Fig. 1a) can be described as a spin-1/2 lattice model with the interaction Hamilto-

nian 12, 17, 24:

H =
J⊥
2 ∑

i> j
Vdd(ri− r j)

(
S+i S−j +S−i S+j

)
, (1)
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where S±i (along with Sz
i ) are the usual spin-1/2 angular momentum operators on site i. The dipolar

interaction energy includes a geometrical factor Vdd(ri− r j) =
(
1−3cos2 Θi j

)
/|ri− r j|3, where

ri is the position of the ith molecule in units of the lattice constant a and Θi j is the angle between

the quantization axis ẑ and the vector connecting molecules i and j. Generic spin-1/2 models in

the form of the Heisenberg spin Hamiltonian also include a JzSz
i S

z
j Ising term. Indeed for polar

molecules we can realize both the Ising and spin exchange interactions. In this work we focus

on the spin-exchange interaction, which has been difficult to realize in previous experiments, by

setting Jz = 0 under a zero electric field. The Hamiltonian reduces to the limiting case known

as the spin-1/2 quantum XY model, in which the spin-exchange interaction is characterized by

J⊥ = −d2
↓↑/4πε0a3, where ε0 is the permittivity of free space and d↓↑ = 〈↓ |d| ↑〉 is the dipole

matrix element between | ↓〉 and | ↑〉. Physically, this term is responsible for exchanging the spins

of two trapped molecules (Fig. 1a).

In our experiment, we create 2× 104 ground-state KRb molecules in the lowest motional

band of a 3D lattice formed by three mutually orthogonal standing waves at λ = 1064 nm. The

lattice constant is a = λ/2 and the lattice depth is 40 Er in each direction, where Er = h̄2k2/2m

is the recoil energy, h̄ is the reduced Planck constant, k = 2π/λ , and m is the mass of KRb. We

use microwaves at ∼2.2 GHz to couple the |0,0〉 and |1,−1〉 states, which form the | ↓〉 and | ↑〉

two-level system. The degeneracy of the N = 1 rotational states is broken due to the interaction

between the nuclear quadrupole moments and the rotation of the molecules, and in a 54.59 mT

magnetic field, the |1,0〉 and |1,1〉 states are higher than the |1,−1〉 state by 270 kHz and 70 kHz,

respectively (Fig. 1b) 14. The quantization axis is set by the magnetic field, which is at 45 degrees
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with respect to the x and y lattice directions (Fig. 1c). The polarizations of the lattice beams are

chosen such that the tensor AC polarizabilities of the |0,0〉 and |1,−1〉 states are very similar 25,

so that we create a spin-state-independent lattice trap (see Methods). We address the entire sample

with a microwave field, achieving a fidelity of greater than 99% for π pulses.

The energy scale for our spin-1/2 quantum XY system is characterized by J⊥/2×Vdd(ri−

r j). For our rotational states, |d↓↑| = 0.98× 0.57/
√

3 Debye and |J⊥/(2h)| = 52 Hz. Here, the

additional factor of 0.98 in the transition dipole matrix element comes from the estimated 2% ad-

mixture of another hyperfine state 14. Each molecule in the lattice will experience an interaction

energy with contributions from all other molecules, where each contribution depends on the sepa-

ration of the two molecules in the lattice and the angle Θ. Figure 1c shows the geometrical factors

for nearby sites relative to a central molecule (green) for our experimental conditions.

We employ coherent microwave spectroscopy to initiate and probe spin dynamics in our

system. Figure 2a shows a basic spin-echo pulse sequence and its Bloch sphere representation.

Starting with the molecules prepared in the | ↓〉 state, the first (π/2)y pulse creates a superposition

state 1√
2
(| ↓〉+ | ↑〉). Any residual differential AC Stark shift, which gives rise to single-particle

dephasing, can be removed using a spin-echo pulse. After a free evolution time T/2, we apply a

(π)y echo pulse, which flips the spins and thus reverses the direction of single-particle precession.

The spins rephase after another free evolution time T/2, at which time we probe the coherence

by applying a π/2 pulse with a phase offset relative to the initial pulse. We measure the number

of molecules left in the | ↓〉 state as a function of this offset phase, which yields a Ramsey fringe
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(Fig. 2b).

With the single-particle dephasing effectively removed, the contrast of the Ramsey fringe

as a function of T yields information on spin interactions in the system 26. We note that the

spin-echo pulse has no impact on the dipolar spin-exchange interactions described by Eqn. 1.

The most striking feature evident in the measured contrast curves (Fig. 2c,d) is the oscillations

on top of an overall decay. We attribute both the contrast decay and the oscillations to dipolar

interactions. Imperfect lattice filling and many-body interactions each give a spread of interaction

energies, which results in dephasing and a decaying contrast in the Ramsey measurement. Fig. 1c

illustrates the different interaction energies coming from Vdd , which can be positive or negative.

For low lattice fillings, the interaction energy spectrum can have a strong contribution from the

largest magnitude nearest-neighbor interaction. Oscillations in the contrast can then result from the

beating of this particular frequency with the contribution from molecules that experience negligible

interaction shifts. In principle, there should be several different oscillation frequencies owing to

the differing geometrical factors in the lattice. While a dominant oscillation frequency is observed,

we find that our data is also not inconsistent with having multiple frequencies.

Since interaction effects depend on the density, we investigate spin coherence for different

lattice filling factors. To reduce the density of molecules without changing the distribution, we

hold the molecules in the lattice for a few seconds while inducing single-particle losses with an

additional strong optical beam that enhances the rate of off-resonant light scattering 15. We fit the

measured time dependence of the Ramsey contrast to an empirical function Ae−T/τ +Bcos2(π f T )
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to extract a coherence time τ and an oscillation frequency f . As shown in Fig. 2d, the oscillation

frequency f is essentially unchanged for our accessible range of densities, but the coherence time τ

depends on the number of molecules, or filling fraction. This is a signature for many-body interac-

tions, and the observation is supported by theory calculations using cluster expansions (Methods).

We observe oscillation frequencies in the range 48±2 Hz for molecule numbers in the lattice

that vary by threefold. The fact that this frequency is consistent with the largest nearest neighbor

interaction energy of |J⊥/(2h)|= 52 Hz supports the conclusion that the contrast oscillations come

from nearest neighbor dipole-dipole interactions. Because this frequency is determined by the

lattice geometry and the dipole matrix element, it does not depend on the lattice filling factor. We

also confirm that the oscillation frequency does not depend on the lattice depth from 20 to 50 Er.

For the coherence time, we observe a strong dependence on the filling factor (Fig. 2e). Density

dependence is a classic signature of interaction effects, and we conclude that the coherence time

in the deep lattice is limited by dipole-dipole interactions. For higher filling factors, the increasing

probability that molecules have multiple neighbors means that more spin-exchange frequencies

will contribute to the signal, which leads to faster dephasing.

Multi-pulse sequences, as well as single spin-echo pulses, are examples of dynamical de-

coupling, which is widely used in NMR 27 and quantum information processing 28 to remove

dephasing and extend coherence times. Although a spin-echo pulse cannot mitigate the contrast

decay that arises from dipole-dipole interactions, a multi-pulse sequence can. In particular, the

pulse sequence 27 shown in Fig. 3a, is designed to remove dephasing due to two-particle dipolar
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interactions (Methods). Analogous to how a spin-echo pulse works, this pulse sequence flips the

eigenstates of the dipolar interaction Hamiltonian (Eqn. 1) for two isolated particles to allow for

subsequent rephasing.

Figure 3b summarizes the Ramsey contrast decay for three different pulse sequences. With a

simple two-pulse Ramsey sequence (with no spin-echo pulse), the coherence time of the system is

very short, with the fringe contrast decaying within 1 ms (triangles in Fig. 3b). With the addition of

a single spin-echo pulse, the single-particle dephasing time can be extended to ∼80 ms (measured

for our lowest molecular density). However, this coherence time is reduced dramatically with in-

creasing molecule number in the lattice, and we observe oscillations in the contrast signal (circles

in Fig. 3b). When we apply the multi-pulse sequence, the oscillations in the contrast are sup-

pressed, and the data fit well to a simple exponential decay with a coherence time slightly longer

than that of the spin-echo case (squares in Fig. 3b). The differences in the measured contrast os-

cillations and decay for the usual spin-echo and multi-pulse sequence highlight the spin-exchange

dynamics driven by pair-wise dipolar interactions (Fig. 3b inset).

To understand the dynamics of this spin system, a key ingredient is the filling fraction of

molecules in the 3D lattice, since the Ramsey contrast decay depends sensitively on the molecular

density (cf. Fig. 2e). Figure 3c shows the probability for a particular molecule to have zero, one,

or more than one neighbors. The probability to have two or more neighbors is non-negligible even

for relatively low fillings. The contrast oscillation is dominated by contributions from pairs of

molecules, which can be substantial near a filling fraction of 4%. On the other hand, interactions
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of multiple molecules contribute to the spin decoherence.

To provide an independent determination of the filling fraction, we have measured tunneling-

induced loss at reduced lattice depths. Molecules are initially prepared in the | ↓〉 state in a 40 Er

lattice. For our fermionic molecules, the chemical reaction rate is much larger between molecules

in distinguishable internal states 2. Moreover, Pauli blocking strongly suppresses molecules in the

same spin state from tunneling into the same lattice site. Therefore, we create a 50/50 incoherent

spin mixture of | ↓〉 and | ↑〉 by applying a π/2 pulse and waiting 50 ms. We then quickly (within

1 ms) lower the lattice depth along only a single direction (y, as shown in Fig. 4a) to allow tun-

neling and loss due to on-site chemical reactions 2, 6, 7. We then measure the remaining number of

molecules in the | ↓〉 state as a function of the holding time. Figure 4b shows example loss curves

for two different lattice depths along y.

In our system, the on-site loss rate Γ0 is proportional to the chemical reaction rate between

the |0,0〉 and |1,−1〉 molecules 7:

Γ0 = β

∫
|W (x,y,z)|4 dxdydz, (2)

where β = 9.0(4)×10−10 cm−3 s−1 is the two-body loss coefficient (Methods) and W (x,y,z) is the

ground-band Wannier function. We can modify Γ0 by changing the lattice depth; however, for our

measurements, the system always remains in the strongly interacting regime in which Γ0� Jt/h̄,

where Jt is the tunneling amplitude. This is the regime of the continuous quantum Zeno effect 8, 29,

where dissipation in the form of measurement or loss can lead to suppression of coherent processes

such as tunneling. Thus, increasing Γ0 actually decreases the effective two-body loss rate between
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neighboring molecules, which is given by

Γeff =
2(Jt/h̄)2

Γ0
. (3)

The number of | ↓〉 molecules, N↓(t), can then be described with a two-body loss equation

dN↓(t)
dt

=− κ

N↓,0
N↓(t)2, (4)

where N↓,0 is the initial number of | ↓〉 molecules and the loss rate coefficient is given by 30 κ =

4qΓeffg
(2)
↓↑ n↓,0. Here, 2n↓,0 = n0 is the initial filling fraction in the lattice, q = 2 is the number

of nearest neighbor sites in our 1D tunneling geometry, and g(2)↓↑ is the correlation function of

different spin states for nearest neighboring sites i and j: g(2)↓↑ = 〈n̂in̂ j − 4~Si ·~S j〉/〈n̂i〉2, with n̂i

the number operator at site i and ~Si the spin 1/2 vector operator. In our case, we assume that

initially the molecules are randomly distributed in the | ↓〉 and | ↑〉 states, so that g(2)↓↑ = 1. Since

the redistribution of molecules due to losses and tunneling can modify g(2)↓↑ , we fit the data to the

solution of Eqn. 4 for short times, where the number has changed by less than 50%.

We verify the continuous quantum Zeno effect by measuring the dependence of the loss rate

κ on Γ0 and Jt . To study the dependence on Γ0, we set the lattice depth along y to be 5.4(4) Er,

which fixes Jt , and then increase the lattice depths along the x and z directions. This compresses

the wave function W (x,y,z) in each lattice site, and thus increases Γ0. As expected for the quantum

Zeno regime, the measured κ decreases as Γ0 increases, and the data are consistent with κ ∝ 1/Γ0

(Fig. 4c). To study the dependence on Jt , we vary the lattice depth along y, while simultaneously

adjusting the x and z lattice depths to keep Γ0 fixed. As shown in Fig. 4d, the measured κ exhibits a

quadratic dependence on Jt as predicted by Eqn. 3. For these loss rate measurements, all parameters
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are known except the initial filling fraction n0. From measurements of the loss rate at several lattice

depths, we find n0 to be 25(5)% for 2× 104 molecules. However, a more complete theory that

incorporates interaction-modified Wannier functions in the lattice will likely lower this value. The

estimate from calculations of the Ramsey fringe contrast decay using a cluster expansion gives of

n0 of about 10% (Methods).

Although it is desirable to increase the lattice filling in order to explore interesting phases

such as quantum magnetism or exotic superfluidity, we have seen that the modest filling factors

achieved for our experiment already enable the observation of dipolar interaction effects in a 3D

lattice spin model. Furthermore, this work prepares us for the study of nontrivial dynamic pro-

cesses such as many-body localization of spin excitations. Adding an external electric field would

further increase the variety of spin models that can be realized with this system.

Methods Summary

We begin with about 1× 105 87Rb atoms and 2.5× 105 40K atoms in a far-off resonance dipole

trap at 1064 nm. The trap frequencies are 25 Hz radially and 185 Hz axially for Rb, where the

axial direction is along ẑ. The Rb gas forms a Bose-Einstein Condensate (BEC) with T/Tc ≈ 0.5,

while the K Fermi gas is at T/TF ≈ 0.5, where Tc is the transition temperature for BEC and TF is

the Fermi temperature. We smoothly ramp on a 3D lattice over 100 ms to a final depth of 40 Er

(16 and 7 recoil energies for Rb and K atoms, respectively). The x and y lattice beams have a waist

of 200 µm and the z beam has a waist of 250 µm. The lattice depth is calibrated with parametric

heating of the molecular gas 25, and has an estimated uncertainty of 5%. After turning on the
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lattice, we lower the intensity of the dipole trap to zero in 50 ms, and then ramp a magnetic field

from 54.89 mT to 54.59 mT in 1 ms to create weakly bound KRb Feshbach molecules. We then

use two-photon stimulated Raman adiabatic passage (STIRAP) to transfer the Feshbach molecules

to the rovibrational ground state. The unpaired Rb and K atoms are removed using resonant light

scattering. After molecules are created in the lattice, we can perform band-mapping measurements

by quickly turning off the lattice in 1 ms. We find that the fraction of molecules in higher bands

is consistent with zero within our detection limit of 5%. To measure the number of ground-state

molecules in the lattice, we reverse the STIRAP process to recreate Feshbach molecules, and then

take an absorption image using light resonant with the K cycling transition.

Methods

Preparation of molecules in a 3D optical lattice We begin with about 1× 105 87Rb atoms and

2.5× 105 40K atoms in a far-off resonance dipole trap at 1064 nm. The trapping frequencies are

25 Hz radially and 185 Hz axially for Rb, where the axial direction is along ẑ. The Rb gas forms a

Bose-Einstein Condensate (BEC) with T/Tc ≈ 0.5, while the K Fermi gas is at T/TF ≈ 0.5, where

Tc is the transition temperature for BEC and TF is the Fermi temperature. We smoothly ramp on

a 3D lattice over 100 ms to a final depth of 40 Er (16 and 7 recoil energies for Rb and K atoms,

respectively). The x and y lattice beams have waists of 200 µm and the z beam has a waist of

250 µm. We calibrate the lattice depth through parametric heating of the molecular gas 25, which

results in an estimated uncertainty of 5%. After turning on the lattice, we lower the intensity of

the dipole trap to zero in 50 ms, and then ramp a magnetic field from 54.89 mT to 54.59 mT in
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1 ms to create weakly bound KRb Feshbach molecules. We then use two-photon stimulated Raman

adiabatic passage (STIRAP) to transfer the Feshbach molecules to the rovibrational ground state.

The unpaired Rb and K atoms are removed using resonant light scattering. After molecules are

created in the lattice, we can perform band-mapping measurements by quickly turning off the

lattice in 1 ms. We find that the fraction of molecules in higher bands is consistent with zero

within our detection limit of 5%. To measure the number of ground-state molecules in the lattice,

we reverse the STIRAP process to recreate Feshbach molecules, and then take an absorption image

using light resonant with the K cycling transition.

Differential light shift in a 3D optical lattice Molecules have complex internal structure;

hence, there are a number of different approaches to finding a magic trap that matches the polar-

izabilities of two different internal states. The polarizability of molecules is anisotropic, so tuning

the angle between the quantization axis and the polarization of the light field can change the polar-

izabilities 25. For a 3D lattice, there are three different polarization vectors. The lattice geometry in

our experiment is shown in Fig. 1c. We choose the x and y lattice beams to have their polarizations

along the horizontal plane, at an angle of ±45 degrees relative to the magnetic field, respectively.

The z lattice polarization is the same as x lattice. Following our previous work 25, the energy shifts

for the |1,0〉, |1,−1〉, and |1,1〉 states are determined by finding the eigenvalues of the Hamiltonian

H =−α(45◦)Ix−α(−45◦)Iy−α(45◦)Iz +diag(ε1,ε2,ε3), (5)

where Ix, Iy, and Iz are the intensities of lattice beams along the x, y, and z directions, α is the

polarizability matrix defined in reference 25, and ε1, ε2, and ε3 are the energies for |0,0〉, |1,−1〉,

and |1,1〉, respectively.
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Figure S1 shows the differential light shift (with respect to the |0,0〉 state) of the |1,0〉,

|1,−1〉, and |1,1〉 states as a function of the lattice depth. The |1,−1〉 state has the smallest

intensity dependence, which corresponds to the minimal inhomogeneity due to spatial variations

of the light shift. The inset shows an expanded plot for the |1,−1〉 state. The red points are the

experimentally measured transition frequencies for different lattice depths, which agree well with

theory. When the lattice depth is about 40Er in each direction, the differential light shift is zero.

We measure the transition frequency between the |0,0〉 and |1,−1〉 states in a 40 Er lattice to be

2.22778338(8) GHz, which agrees with the measured frequency of 2.22778335(4) GHz in the

absence of any optical potentials. At this lattice depth, the slope for the differential light shift is

120 Hz/Er, and the total variation of the light shift across the entire sample is less than 500 Hz.

This residual light shift limits the coherence time of our standard Ramsey measurement to

about 1 ms (triangle data points in Fig. 3c), and so we use a spin-echo refocusing pulse to ame-

liorate the effects single-particle dephasing. However, spatial variations of the differential light

shift can in principle still influence the spin dynamics. Site-dependent shifts of the resonance fre-

quency would appear in the Hamiltonian as an inhomogeneous “magnetic field” term δi Sz
i , which

can serve to suppress spin-exchange. For the conditions used in our experiments, we estimate that

the spatial variations of the differential light shift are small enough so that spin-exchange remains

near-resonant. Based on the measured Ramsey coherence times and the details of our system (op-

tical lattice beams and the molecular ensemble), we calculate a system-averaged nearest-neighbor

bias (〈|δi−δi+1|〉i/h) of 6 Hz, well below the expected exchange coupling |J⊥/2h|= 52 Hz (with

9 Hz and 13 Hz for neighbors separated by
√

2a and 2a, respectively). To demonstrate that the
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oscillation frequency in the Ramsey fringe contrast does not sensitively depend on the optical in-

tensity, we have taken four different Ramsey contrast measurements (cf. Fig. S2) for values of the

lattice depth between 20 and 40 Er, and found very good agreement amongst them.

Multi-pulse sequence It is straightforward to understand how the multi-pulse sequence

works for two particles. Two molecules are initially prepared in the |↓↓〉 state. An initial (π/2)y

pulse transfers them to

1√
2
(| ↓〉+ | ↑〉)⊗ 1√

2
(| ↓〉+ | ↑〉) = 1

2
(| ↓↓〉+ | ↑↑〉+ | ↓↑〉+ | ↑↓〉). (6)

Because of the spin exchange term, |↓↑〉 and |↑↓〉 are not eigenstates of the Hamiltonian expressed

in Eqn. 1. However, the three triplet states |↓↓〉, |↑↑〉, and 1√
2
(| ↓↑〉+ | ↑↓〉) are eigenstates of the

Hamiltonian, with eigenenergies 0, 0, and J⊥/2. We note that a single (π/2)x pulse can swap

between the states |↓↓〉+|↑↑〉 and |↓↑〉+|↑↓〉, and can thus act as an effective spin-echo for these

contributions to the two-particle wavefunction.

During the first free evolution time T/8, |↓↓〉 and |↑↑〉 accumulate no phase, while 1√
2
(| ↓↑

〉+ | ↑↓〉) accumulates a phase e−i(J⊥/h̄)T/16. At this point the state is entangled. We then apply a

(−π/2)x pulse to swap the contributions from |↓↑〉+|↑↓〉 and |↓↓〉+|↑↑〉. This can alternatively be

viewed as swapping the accrued phases between these contributions. After another T/4 evolution

time, the (π/2)x pulse swaps the phases again. This state then freely evolves for another T/8, after

which both |↓↑〉+|↑↓〉 and |↓↓〉+|↑↑〉 have accumulated the same phase e−i(J⊥/h̄)T/8, and so the

state is no longer entangled. In this way the dephasing due to pairwise dipole-dipole interactions is

canceled. The center (π)x pulse and another pair of (−π/2)x and (π/2)x pulses are necessary for
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removing the single-particle inhomogeneity in addition to rephasing the dipole-dipole interactions.

The effects of dipole-dipole interactions beyond that of isolated pairs of molecules are not removed

by this particular multi-pulse sequence.

Interspecies two-body loss coefficient To determine the appropriate two-body loss coef-

ficient to describe the recombination of molecules in distinguishable rotational states, we have

measured losses for an incoherent mixture of |0,0〉 and |1,−1〉 molecules in an optical dipole

trap, as presented in Fig. S3. We find a two-body loss coefficient of 9.0(4)×10−10 cm−3 s−1 for

the mixture of rotational states that support resonant dipolar interactions, which exceeds that for

molecules in different nuclear (hyperfine) states 2 (with no resonant dipolar coupling) by roughly

a factor of 5.

Theoretical modeling of the spin dynamics Theoretical modeling of the spin dynamics

observed with Ramsey spectroscopy shows similar oscillations and coherence times as our mea-

surements, and the comparison can be used to estimate a filling factor of 5− 10% for 2× 104

molecules. Although exactly treating the many-body dynamics is intractable, at sufficiently small

filling a “cluster expansion” that separates N molecules into clusters of maximum molecule num-

ber g and solves exactly the spin dynamics within these clusters 31, 32 can be quite accurate (we

use g up to 10). For example, in the extremely dilute limit, most molecules sit far from all other

molecules, with only a few occupying adjacent lattice sites. The isolated molecules have static

dipolar interactions and only clusters with two or more particles evolve in time.

We find that the cluster expansion depends relatively weakly on the assumed spatial dis-
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tribution of the molecules (which we know only roughly), and that the main dependence of the

contrast decay comes from the assumed filling, such that the filling estimate is reliable in this

regard. A discussion of the convergence of the cluster expansion is far beyond the scope of the

present manuscript, but its uncertainties are the main reason for the uncertainty in the estimated

filling fraction.

We emphasize that not only is the observed contrast decay an interaction effect, as discussed

in the main text, but that the cluster expansion suggests that it arises from effects beyond summing

dynamics of pairs of molecules. Although summing pairwise dynamics leads to contrast decay

time τ decreasing with increased filling fractions, this τ is significantly larger than the cluster

expansion using the largest clusters. In fact, to match experimental contrast decay rates with only

pairwise dynamics, the lattice filling would have to be unreasonably high, at least 15-25%. The

simple Zeno estimate described in the main text was 25(5)%, but the interaction modification of

Wannier functions will reduce this substantially. An exact solution for double wells indicates it

will be suppressed by a factor of at least four, well below the filling required for pairwise dynamics

to explain the experimental observations. This conclusion of the importance of beyond-pairwise

dynamics is also consistent with the substantial numbers of nearby molecules occurring even for

relatively modest lattice fillings, as shown in Fig. 3c.
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Figure 1 Dipolar interactions of polar molecules in a 3D lattice. a, Polar molecules

are loaded into a deep 3D optical lattice. Microwaves are used to address the transition

between two rotational states (red and blue represent different rotational states). J⊥ char-

acterizes the spin-exchange interaction energy. b, A schematic energy diagram (not to

scale) is shown for the ground and first-excited rotational states. The degeneracy of the

excited rotational states is broken due to a weak coupling of the nuclear and rotational

degrees of freedom. We use |0,0〉 and |1,−1〉 as our two spin states. c, The interac-

tion energy between any two molecules depends on their relative position in the lattice.

The numbers shown give the geometrical factor −Vdd(ri− r j) for the dipolar interaction of

each site relative to the central site (green), under the specific quantization axis (B-field).

Negative values (blue) correspond to attractive interactions, and positive values (red) to

repulsive interactions.

Figure 2 Coherent spin dynamics of polar molecules. a, A (π/2)y pulse initializes the

molecules in a coherent superposition of rotational states. A spin-echo pulse sequence is

used to correct for effects arising from single-particle inhomogeneities across the sample,

such as residual light shifts. b, The phase of the final π/2 pulse is scanned (corresponding

to rotations around a variable axis n̂) to obtain a Ramsey fringe. Two fringes are shown,

corresponding to the short and intermediate time scales. c, The contrast of the Ramsey

fringe is measured as a function of interrogation time. Since the molecules’ spin states

are initially all in phase, at very short times, T < 2h/J⊥, the contrast decay curve should
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be quadratic 17, as shown in the inset. d, The contrast of the Ramsey fringe versus inter-

rogation time is shown for two different filling factors, characterized by the initial molecular

number. In addition to the density-dependent decay, we observe clear oscillations, which

arise from spin-exchange interactions between neighboring molecules. e, The spin co-

herence time decreases for increasing molecule number. The solid line shows a fit to

C+A/N, where C and A are constants. All error bars represent one standard error.

Figure 3 Multi-pulse sequence and decoupling of pair-wise dipolar interactions.

a, The multi-pulse sequence is designed to suppress both single-particle dephasing and

the effect of pair-wise dipole-dipole interactions. b, The contrast decay is displayed as a

function of time under three different pulse sequences. Without a spin-echo pulse, single-

particle inhomogeneities result in a Ramsey coherence time of about 1 ms (triangles). The

spin-echo pulse effectively removes the single-particle dephasing, so that spin-exchange

interactions play the dominant role in the contrast decay (circles). The multi-pulse se-

quence suppresses the contrast oscillations and slightly improves the coherence time

(squares). Inset The difference in contrast between the the multi-pulse sequence and the

spin-echo case shows clear oscillations. All error bars represent one standard error. c,

The probability for a particular molecule to have zero, one, or more than one neighbors

(within the cube shown in Fig. 1c) is plotted as a function of a uniform lattice filling factor.

Figure 4 Quantum Zeno effect for polar molecules in a 3D lattice. a, The lattice

depths along x and z are kept at 40 Er, while the lattice depth along y is reduced to allow
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tunneling along the y direction at a rate Jt/h̄. Once two molecules in different spin states

tunnel to the same site, they are lost due to chemical reactions at a rate Γ0. b, Number

loss of | ↓〉 state molecules versus time is shown for lattice depths along y of 8.1 Er and

15.1 Er. c, The number loss rate κ versus Γ0 fits to a 1/Γ0 dependence, which is con-

sistent with the quantum Zeno effect. d, The number loss rate κ versus Jt fits to a (Jt)
2

dependence, as predicted from the quantum Zeno effect. All error bars represent one

standard error.
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